Category: Finite Element Analysis

Acoustic Analysis of an Automobile Horn

 

AU-2 Horn assembly.jpg
Horn Assembly

Objective: D65 is a type of horn of Diameter 65mm and  mainly consists of a resonator and a diaphragm which are separated by an air column which is responsible for the functioning of the horn. The resonator of the horn is 0.6mm in thickness and attached to the diaphragm with the help of a washer. The resonator consists of three humps in its design. The functioning will be best when the frequency of the air gap and resonator match or are almost equal and this is analyzed by various FEM methods.

Methodology and Analysis: By using FEM  we can easily find out the frequency of the resonator but the frequency of the air column is a fluid-solid interaction(FSI) problem. Advanced FEM algorithm was used for the air column frequency and then by iterative method the frequency of both were matched . From the analysis done, some factors which can improve the design are modifying the dimension  of the washer between resonator and diaphragm, like 0.5, 0.8, 1.0 etc and modification in the thickness of the resonator. Analysis is done  by using different thickness of the resonator for different dimension of the washer. Few of the results are shown in the image.

Result and Conclusion: From various analysis done  it can be concluded that the dB and quality of sound depends on the natural frequency of the air column and natural frequency of the resonator. Smaller the gap the better  will be the quality of sound in the particular range. Since 0.6mm is the actual thickness of the resonator which upon analysis was modified to 0.4mm so that the air column volume was increased and hence the quality of sound improved. After  changing the thickness and the profile the output is found to be good i.e. 0.4mm thickness and base is up from second hump and outer side by 0.8mm.   Hence the resonator design was optimized to produce maximum sound  with high quality.

Pulsation Analysis For High Pressure Petroleum Pipelines

Pulsation Analysis For High Pressure Petroleum Pipelines

Objective: Piping systems are a central part of numerous engineering installations. A number of sources such as pumps generate vibrations which can propagate along the pipes and excite other structures. These vibrations can cause two main problems, namely mechanical fatigue and acoustical noises. Further, interaction of the dynamic flow generated by the pump plungers with acoustical resonances in piping systems can result in high pressure pulsation levels pump and piping, cavitation, excessive vibrations and failures. Moreover, higher frequency fluid borne noise can be generated from flow perturbations associated with elbows, valves or cross section changes in the pipe. This design approach in conjunction with pulsation simulation is required to couple technical analysis of piping system to ensure that the piping will have adequate supports and clamps to maintain mechanical natural frequency of major acoustical energy.

Modeling and Analysis: The first design approach involved pulsation and vibration control through the use of good piping layout and support principles, adequate suction pressure and use of pulsation control devices such as dampers, accumulators, preventers, hydraulic isolators, inhibitors, suppressors, stabilizers, acoustic filters and selected piping configurations.The acoustical simulation techniques predict the potential of cavitations and the  required minimum suction to prevent cavitations, based on amplitudes of the pulsations. The results obtained from the analysis proved that the pulsation levels at the suction end were considerably reduced and the pulsation levels were found to be under API 674 standards. Based on the pulsation amplitudes at various frequencies harmonic loads acting on the pipelines were calculated. These harmonic loads were applied at respective nodes and a FEM based harmonic analysis was done to determine the natural frequency of the system and response of the system to harmonic loads arising from pressure pulsations.

Conclusion: From the analysis the pipeline was first tested for the given set of pulsation damping equipments and reciprocating pumps. It was observed that the old configuration did not provide the desired pulsation control in the system. We observed amplification in pulsation in the suction side which was much above the values accepted by API and cavitations were observed at the suction end of the plunger. To reduce the pulsation it was therefore suggested that an additional pressure dampening equipment of size 1 liter must be installed 0.55 m from the suction end of the reciprocating pump. Further the analysis done on the pipeline with the additional dampening accumulator shows considerable reduction in pressure pulsation and the pulsation amplitudes were much below the allowable limits